• Researchers have recorded the briefest interval of time ever measured: 247 zeptoseconds—the duration for a photon of light to traverse a hydrogen molecule.

    That's 0.000000000000000000247 seconds.A zeptosecond equals one trillionth of a billionth of a second, a realm where light, the universe's speed champion, advances mere fractions of an atomic diameter. For scale, a single second contains as many zeptoseconds as there are seconds in 31.7 trillion years—vastly exceeding the age of the cosmos.

    Physicist Reinhard Dörner and colleagues at Goethe University Frankfurt achieved this using intense X-rays from Hamburg's PETRA III accelerator. They aimed at hydrogen molecules—the simplest in existence, comprising two protons and two electrons. An incoming photon struck both electrons in rapid sequence, akin to a stone skipping across water.

    To resolve this fleeting event, the team employed a COLTRIMS reaction microscope, an ultra-precise instrument that tracks particle positions and momenta. By examining the interference patterns from the two expelled electrons, they pinpointed the precise lag between the photon's impact on the first electron and the second.The finding: 247 zeptoseconds.

    This demonstrates that light does not illuminate a molecule instantaneously, even at this tiny scale; the delay stems from light's finite velocity of roughly 186,000 miles per second (300,000 km/s). It represents the first direct observation of light propagating inside a molecule.

    By contrast, chemical reactions unfold over femtoseconds—a thousandfold longer. Zeptosecond precision opens a window into quantum timescales, where electron and photon dynamics govern matter's core behaviors.

    #zeptosecond #chemiclas #quantum #timescale #scrolllink
    Researchers have recorded the briefest interval of time ever measured: 247 zeptoseconds—the duration for a photon of light to traverse a hydrogen molecule. That's 0.000000000000000000247 seconds.A zeptosecond equals one trillionth of a billionth of a second, a realm where light, the universe's speed champion, advances mere fractions of an atomic diameter. For scale, a single second contains as many zeptoseconds as there are seconds in 31.7 trillion years—vastly exceeding the age of the cosmos. Physicist Reinhard Dörner and colleagues at Goethe University Frankfurt achieved this using intense X-rays from Hamburg's PETRA III accelerator. They aimed at hydrogen molecules—the simplest in existence, comprising two protons and two electrons. An incoming photon struck both electrons in rapid sequence, akin to a stone skipping across water. To resolve this fleeting event, the team employed a COLTRIMS reaction microscope, an ultra-precise instrument that tracks particle positions and momenta. By examining the interference patterns from the two expelled electrons, they pinpointed the precise lag between the photon's impact on the first electron and the second.The finding: 247 zeptoseconds. This demonstrates that light does not illuminate a molecule instantaneously, even at this tiny scale; the delay stems from light's finite velocity of roughly 186,000 miles per second (300,000 km/s). It represents the first direct observation of light propagating inside a molecule. By contrast, chemical reactions unfold over femtoseconds—a thousandfold longer. Zeptosecond precision opens a window into quantum timescales, where electron and photon dynamics govern matter's core behaviors. #zeptosecond #chemiclas #quantum #timescale #scrolllink
    0 Commentarios 0 Acciones 125 Views 0 Vista previa
  • In a landmark experiment, researchers have achieved the fastest-ever detection of a single electron, capturing its presence within 6 trillionths of a second in a gallium arsenide semiconductor.

    By injecting two electrons from separate sites and monitoring their near-instantaneous electric repulsion as they approached, scientists at the UK’s National Physical Laboratory used one electron’s deflection to pinpoint the other. This exceptional temporal resolution is roughly 100 times quicker than previous methods, moving us closer to building devices that manipulate single electrons at the speed of quantum interactions.



    Conventional electronics rely on vast flows of many electrons, but controlling single-electron events in real time could make devices much faster, smaller, and more energy-efficient—while also directly tapping the quantum nature of electrons. The approach depends on exquisitely controlled electron pumps and sensors, hinting at the possibility of future quantum technologies as compact as a microchip. T



    he achievement provides an essential building block for advances in quantum communication and computing, and could even allow improvement in the fundamental definitions of electric current by employing quantum standards.



    What makes this finding unique is its ability to probe the fleeting, ultrafast interactions that underlie all electrical currents—a regime where quantum behavior dominates. Researchers now hope to use this capability to unlock deeper insights into the quantum world, accelerating progress toward devices and measurements unimaginable just a decade ago.



    RESEARCH PAPER



    Masaya Kataoka et al, "Single-electron detection on a picosecond timescale", Physical Review Letters (2025)

    — in New York, NY, United States.

    #science #scrolllink
    🔬 In a landmark experiment, researchers have achieved the fastest-ever detection of a single electron, capturing its presence within 6 trillionths of a second in a gallium arsenide semiconductor. By injecting two electrons from separate sites and monitoring their near-instantaneous electric repulsion as they approached, scientists at the UK’s National Physical Laboratory used one electron’s deflection to pinpoint the other. This exceptional temporal resolution is roughly 100 times quicker than previous methods, moving us closer to building devices that manipulate single electrons at the speed of quantum interactions. Conventional electronics rely on vast flows of many electrons, but controlling single-electron events in real time could make devices much faster, smaller, and more energy-efficient—while also directly tapping the quantum nature of electrons. The approach depends on exquisitely controlled electron pumps and sensors, hinting at the possibility of future quantum technologies as compact as a microchip. T he achievement provides an essential building block for advances in quantum communication and computing, and could even allow improvement in the fundamental definitions of electric current by employing quantum standards. What makes this finding unique is its ability to probe the fleeting, ultrafast interactions that underlie all electrical currents—a regime where quantum behavior dominates. Researchers now hope to use this capability to unlock deeper insights into the quantum world, accelerating progress toward devices and measurements unimaginable just a decade ago. 📄 RESEARCH PAPER 📌 Masaya Kataoka et al, "Single-electron detection on a picosecond timescale", Physical Review Letters (2025) — in New York, NY, United States. #science #scrolllink
    0 Commentarios 0 Acciones 583 Views 0 Vista previa